منابع مشابه
Time - sliced path integrals with stationary states
The path integral approach to the quantization of one degree-of-freedom Newtonian particles is considered within the discrete time-slicing approach, as in Feynman’s original development. In the time-slicing approximation the quantum mechanical evolution will generally not have any stationary states. We look for conditions on the potential energy term such that the quantum mechanical evolution m...
متن کاملPath integrals for spinning particles , stationary phase and the Duistermaat - Heckman theorem
Path integrals for spinning particles, stationary phase and the Duistermaat-Heckman theorem. Abstract We examine the problem of the evaluation of both the propagator and of the partition function of a spinning particle in an external field at the classical as well as the quantum level, in connection with the asserted exactness of the saddle point approximation (SPA) for this problem. At the cla...
متن کاملTime-Frequency Integrals and the Stationary Phase Method in Problems of Waves Propagation from Moving Sources
The time-frequency integrals and the two-dimensional stationary phase method are applied to study the electromagnetic waves radiated by moving modulated sources in dispersive media. We show that such unified approach leads to explicit expressions for the field amplitudes and simple relations for the field eigenfrequencies and the retardation time that become the coupled variables. The main feat...
متن کاملStationary Phase Integrals, Quantum Toda Lattices, Flag Manifolds and the Mirror Conjecture
This operator is a quantization of the Hamiltonian of the Toda lattice on n+1 identical particles with configuration coordinates t0, ..., tn and with the exponential interaction potential exp(ti−ti−1) of neighbors. The Toda lattice is known to be integrable on both classical and quantum levels: there exist commuting differential polynomials Dm(~∂/∂t, exp t, ~), m = 0, ..., n, which play the rol...
متن کاملPhase Functions and Path Integrals
This note is an introduction to our forthcoming paper [17]. There we show how to construct the metaplectic representation using Feynman path integrals. We were led to this by our attempts to understand Atiyah’s explanation of topological quantum field theory in [2]. Like Feynman’s original approach in [9] (see also [10]) an action integral plays the role of a phase function. Unlike Feynman, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 1994
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089500030962